Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 79(10): 103109, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044704

RESUMO

An imaging spectrometer was designed and fabricated for recording far ultraviolet spectra from laser-produced plasmas with wavelengths as short as 155 nm. The spectrometer implements a Cassegrain telescope and two gratings in a tandem Wadsworth optical configuration that provides diffraction limited resolution. Spectral images were recorded from plasmas produced by the irradiation of various target materials by intense KrF laser radiation with 248 nm wavelength. Two pairs of high-resolution gratings can be selected for the coverage of two wavebands, one grating pair with 1800 grooves/mm and covering approximately 155-175 nm and another grating pair with 1200 grooves/mm covering 230-260 nm. The latter waveband includes the 248 nm KrF laser wavelength, and the former waveband includes the wavelength of the two-plasmon decay instability at 23 the KrF laser wavelength (165 nm). The detection media consist of a complementary metal oxide semiconductor imager, photostimulable phosphor image plates, and a linear array of 1 mm(2) square silicon photodiodes with 0.4 ns rise time. The telescope mirrors, spectrometer gratings, and 1 mm(2) photodiode were calibrated using synchrotron radiation, and this enables the measurement of the absolute emission from the laser-produced plasmas with temporal, spatial, and spectral resolutions. The spectrometer is capable of measuring absolute spectral emissions at 165 nm wavelength as small as 5x10(-7) J/nm from a plasma source area of 0.37 mm(2) and with 0.4 ns time resolution.

2.
Appl Opt ; 47(15): 2767-78, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18493282

RESUMO

Maintaining high resolving power is a primary challenge in hard x-ray spectroscopy of newly developed bright and transient x-ray sources such as laser-produced plasmas. To address this challenge, the line widths in x-ray spectra with energies in the 17 keV to 70 keV range were recorded by positioning the detectors on and behind the focal circles of Cauchois type transmission-crystal spectrometers. To analyze and understand the observed line widths, we developed a geometrical model that accounts for source broadening and various instrumental broadening mechanisms. The x-ray sources were laboratory Mo or W electron-bombarded anodes, and the spectra were recorded on photostimulable phosphor image plates. For these relatively small x-ray sources, it was found that when the detector was placed on or near the focal circle, the line widths were dominated by the effective spatial resolution of the detector. When the detector was positioned beyond the focal circle, the line widths were determined primarily by source-size broadening. Moreover, the separation between the spectral lines increased with distance behind the focal circle faster than the line widths, resulting in increased resolving power with distance. Contributions to line broadenings caused by the crystal thickness, crystal rocking curve width, geometrical aberrations, and natural widths of the x-ray transitions were in all cases smaller than detector and source broadening, but were significant for some spectrometer geometries. The various contributions to the line widths, calculated using simple analytical expressions, were in good agreement with the measured line widths for a variety of spectrometer and source conditions. These modeling and experimental results enable the design of hard x-ray spectrometers that are optimized for high resolving power and for the measurement of the x-ray source size from the line widths recorded behind the focal circle.

3.
Appl Opt ; 47(31): 5753-61, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19122716

RESUMO

The modulation transfer functions of two types of photostimulable phosphor image plates were determined in the 10 keV to 50 keV x-ray energy range using a resolution test pattern with up to 10 line pairs per mm (LP/mm) and a wavelength dispersive x-ray spectrometer. Techniques were developed for correcting for the partial transmittance of the high energy x rays through the lead bars of the resolution test pattern, and the modulation transfer function (MTF) was determined from the measured change in contrast with LP/mm values. The MTF was convolved with the slit function of the image plate scanner, and the resulting point spread functions (PSFs) were in good agreement with the observed shapes and widths of x-ray spectral lines and with the PSF derived from edge spread functions. The shapes and the full width at half-maximum (FWHM) values of the PSF curves of the Fuji Superior Resolution (SR) and Fuji Maximum Sensitivity (MS) image plate detectors, consisting of the image plate and the scanner, determined by the three methods gave consistent results: The SR PSF is Gaussian with 0.13 mm FWHM, and the MS PSF is Lorentzian with 0.19 mm FWHM. These techniques result in the accurate determination of the spatial resolution achievable using image plate and scanner combinations and enable the optimization of spatial resolution for x-ray spectroscopy and radiography.

4.
Opt Lett ; 30(23): 3120-2, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16342695

RESUMO

The responsivity of a type 6H-SiC photodiode in the 1.5-400 nm wavelength range was measured using synchrotron radiation. The responsivity was 0.20 A/W at 270 nm and was less than 0.10 A/W in the extreme ultraviolet (EUV) region. The responsivity was calculated using a proven optical model that accounted for the reflection and absorption of the incident radiation and the variation of the charge collection efficiency (CCE) with depth into the device. The CCE was determined from the responsivity measured in the 200-400 nm wavelength range. By use of this CCE and the effective pair creation energy (7.2 eV) determined from x-ray absorption measurements, the EUV responsivity was accurately modeled with no free parameters. The measured visible-light sensitivity, although low compared with that of a silicon photodiode, was surprisingly high for this wide bandgap semiconductor.

5.
Appl Opt ; 41(25): 5209-17, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12211544

RESUMO

The time-dependent response of a 1-mm2 silicon photodiode was characterized by use of pulsed synchrotron radiation in the 4- to 16-nm-wavelength range. Modeling the input radiation pulse and the electrical response of the photodiode allowed the photodiode's capacitance as a function of wavelength and applied bias voltage to be determined. The capacitance was in the 7- to 19-pF range and resulted in response fall times as small as 0.4 ns. The capacitance determined by pulsed x-ray illumination was in good agreement with the capacitance determined by pulsed optical laser illumination. The absolute responsivity was measured by comparison with the responsivity of a calibrated photodiode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...